An odd oxygen framework for wintertime ammonium nitrate aerosol pollution in Salt Lake Valley NO_x and VOC control as mitigation strategies

Carrie Womack // NOAA Earth System Research Lab and CIRES Erin McDuffie, Pete Edwards, Ale Franchin, Ann Middlebrook, Munkh Baasandorj, Steve Brown UWFPS Team UBWOS Team AQUARIUS Workshop // 26 September 2019

Wintertime PM_{2.5} pollution persists in the US and elsewhere

PM-2.5 Nonattainment Areas (2006 Standard)

PM_{2.5} (µg m⁻³)

Salt Lake Valley pollution episodes occur during persistent cold air pools (PCAPs)

In the SLV: $PM_{2.5} = Wintertime PM_{2.5} \approx Ammonium nitrate aerosol = HNO_3(g)$

Some of the questions driving UWFPS (2017)

- What are the chemical mechanisms that form HNO₃ during PCAPs?
- What control strategies would be most effective for limiting HNO₃ production? Is NO_x control the best strategy?

 $\frac{\text{Traditional}}{O_x} = O_3 + NO_2$ Parameter for daytime
photochemical O₃ production

 $\begin{array}{l} & \underline{\text{More general term}}\\ \text{O}_{x,\text{total}} = \text{O}_3 + \text{NO}_2 + 2^*\text{NO}_3 + 3^*\text{N}_2\text{O}_5 + \text{CINO}_2 + 1.5^*(\text{HNO}_3 + \text{pNO}_3^-) \\ & + \text{PANs} + \text{ANs} + \text{OH} + \dots \end{array}$ Parameter for either photochemical **O**_3 or **HNO**3 production

During UWFPS we observed $O_{x,total}$ growth during the PCAPs – an indicator of photochemical activity

DSMACC modeled the O_3 growth in Uintah basin – can a similar model described $O_{x,total}$ in the SLV?

Edwards et at, *Nature* (2014)

Using a "split" DSMACC box model accounts for chemistry occurring in the residual layer at night

An $O_{x,total}$ isopleth shows the NO_x-VOC sensitivity of the SLV

- 1) O_{x,total} production in the SLV is NO_x-saturated and VOC-limited
- 2) NO_x reductions, in the absence of concurrent VOC reductions, *will initially increase* $O_{x,total}$ in the form of pNO_3^- and O_3 .

Womack et al., *GRL*, **46**, 4971 (2019)

O_3 in Uintah and pNO₃⁻ in SLV can be explained by the HO_x chain length

Uintah: High VOC/NO_x propagates cycle, making O_3 .

SLV: Low VOC/NO_x quenches cycle, terminating in HNO_3 .

What we wish we had...

- More complete observations
 - Oxidized VOCs
 - Short lived radicals (HO_x, NO₃, etc.)
- More complete meteorology
 - Solar radiation and photolysis rates
 - Vertical measurements of the boundary layer dynamics

Unanswered questions

- Does VOC-limitation hold
 throughout PCAP?
- Is VOC-limitation valid throughout the winter season?
- Where else is this framework relevant?

Summary

- O_{x,total} is a general parameter to describe both O₃ and HNO₃ production.
 - O₃ and pNO₃⁻ pollution are closely linked, and are endpoints of the same chemical cycle
 - The NO_x-VOC sensitivity isopleths also apply to pNO₃⁻
- The SLV is both HNO₃-limited, but NO_x-saturated. NO_x reductions alone will initially *increase* pNO₃⁻ in the valley.
- This result may be a general worldwide phenomenon, as high NO_x and limited radical sources are common in wintertime boundary layers.

Extra slides

Ale Franchin et al. *ACP*, **18**, 17259 (2018) Airborne and ground-based observations of ammonium-nitrate-dominated aerosols

in a shallow boundary layer during intense winter pollution episodes in northern Utah

Erin McDuffie et al. *ACP Discussions*, in review (2019) On the contribution of **nocturnal heterogeneous reactive nitrogen chemistry** to particulate matter formation during wintertime pollution events in Northern Utah

Alex Moravek et al: *ACP Discussions*, in review (2019) Wintertime **Spatial Distribution of Ammonia** and its Emission Sources in the Great Salt Lake Region

Utah Winter Fine Particulate Study (UWFPS)

January 16 – February 13, 2017

Utah Valley

University of Utah (UU) and Hawthorne (HW)

NO_x, O₃, PM_{2.5}, NH₃, CH₄, CO₂

I- CIMS (HONO, HNO₃, CINO₂,

 NO_{x} , O_{3} , CO, PM_{25}

AMS (pNO_3)

Logan (L4)

 N_2O_5)

PTR-MS (aromatics, aldehydes)

Twin Otter (TO)

- NO_x , O_3 , NH_3
- I- CIMS (HONO, HNO₃,
 - $CINO_2$, N_2O_5)
- AMS (pNO₃)

Two major PCAPs observed. Ammonium nitrate dominated PM₂₅. Ammonia was usually in excess. 2017 was a typical winter.