Fine Particle Acidity

Rodney Weber

The Acidity of Atmospheric Particles and Clouds

Havala O. T. Pye¹, Athanasios Nenes^{2,3}, Becky Alexander⁴, Andrew P. Ault⁵, Mary C. Barth⁶, Simon L. Clegg⁷, Jeffrey L. Collett, Jr.⁸, Kathleen M. Fahey¹, Christopher J. Hennigan⁹, Hartmut Herrmann¹⁰, Maria Kanakidou¹¹, James T. Kelly¹², I-Ting Ku⁸, V. Faye McNeill¹³, Nicole Riemer¹⁴, Thomas Schaefer¹⁰, Guoliang Shi¹⁵, Andreas Tilgner¹⁰, John T. Walker¹, Tao Wang¹⁶, Rodney Weber¹⁷, Jia Xing¹⁸, Rahul A. Zaveri¹⁹, Andreas Zuend²⁰

Ammonium Nitrate Formation

gas

Importance of Aerosol pH

Particle acidity is a critical air quality parameter that affects many aerosol environmental impacts:

- Mass (partitioning of semivolatile ions, NH₄NO₃, acid catalyzed SOA formation)
- Toxicity (concentration of trace species, eg, metal ions)
- Hygroscopicity (ionic composition), hence optical properties/climate

Particle acidity is better than proxies in analysis and conceptual thinking (molar ratios, ion balances)

Acidity currently most accurately determined by a thermodynamic model with full suite of observational inputs.

→Useful to <u>report</u> predicted pH (not just partitioning results)

 \rightarrow Accuracy of the thermodynamic model predictions should be assessed.

Determining aerosol pH with a thermodynamic model: e.g., ISORROPIA II

1. Solid phase: NaHSO₄, NH₄HSO₄, Na₂SO₄, NaCl, (NH₄)₂SO₄, (NH₄)₃H(SO₄)₂, NH₄NO₃, NH₄Cl, NaNO₃, K₂SO₄, KHSO₄, KNO₃, KCl, CaSO₄, Ca(NO₃)₂, CaCl₂, MgSO₄, MgCl₂, Mg(NO₃)₂

Example : UWFPS high pNO₃⁻ : HNO₃ vs NH₃ Control

Alternate formulation that includes pH and LWC

Example, Cabauw Netherlands

Nenes, Pandis, Weber, Russell; ACPD Sept 26

Assessing the accuracy of predicted pH and effects

• Currently best way to assess model prediction is to compare measured vs predicted gas/particle partitioning <u>of a suite</u> of semivolatile species

CalNex: Pasadena, CA

Generally good, but NH₃/NH₄⁺ seems better than HNO₃/NO₃⁻

Cabauw, **Netherlands**

90

40

30

RH

2

\geq Best is NH₃/NH₄⁺

Assessing the Accuracy of predicted pH, role of mixing state

NH₃/NH₄⁺ partitioning in almost all cases is the best, why ?

WINTER: Northeastern US in winter (aircraft, no NH₃ data)

HNO₃/NO₃⁻ partitioning vs RH

Assessing the accuracy of predicted pH and effects

- 1. Partitioning comparison is useful to assess thermodynamic model, LWC is an additional constraint.
- 2. Aerosol phase? Solids phases, liquid organic phases with dissolved ions ... ?
 - Predicted liquid water (LWC) is sensitive to phases state

The thermodynamic model also predicts W_i , which can be used as a further test:

Example: SOAS predicted and measured particle water

Particle Water and the role of organic species on pH:

 W_i is just water from inorganic species, can test role of organic species on water, which could affect actual pH $1000v + H^+$

$$pH = -\log_{10}\gamma_{H^{+}}H_{aq}^{+} = -\log_{10}\frac{1000\gamma_{H^{+}}H_{air}}{W_{i} + W_{o}} \cong -\log_{10}\frac{1000\gamma_{H^{+}}H_{air}}{W_{i}}$$

SOAS diurnal variation in particle water and pH

pH varies diurnally (1.5 night & 0.5 day); mainly caused by LWC (RH). (Guo et al. ACP, 2015)

Specific Questions

Some Possible Key Scientific Questions

- 1. What is the pH of fine particles (1-5, avg ~3.5, Womack) how does it vary and why (T, RH, NHx, SO₄⁼)?
- 2. How accurate is the thermodynamic model, pH, HNO₃/NO_{3⁻}, HCl/Cl⁻...?
- 3. What is the particle LWC, how accurately is it determined ?
- 4. Effect of NVCs and mixing state on pH, HNO₃/NO₃⁻, do NVCs need to be considered (is AMS data ok) ?
- 5. Toxicity of the aerosol (oxidative potential, concentration of metal ions, etc)?

Recommendations

- 1. Measure full suite of fine particle <u>anions</u> and <u>cations</u> (including NVCs, possibly organic acids), LWC, possibly size distributions and size resolved composition MOUDI) **AND** gases HNO₃, NH₃, HCl
- Measure toxicity, contrasts to other locations: Oxidative potential, PAHs/Quinones, metal ions (Cu⁺/Cu²⁺, Fe²⁺/Fe³⁺, may be others of importance)

Measurements that need to be made to predict and assess particle acidity and effects

- 1. Particle phase
 - Anions: SO₄²⁻, NO₃⁻, Cl⁻, organic acids (?)
 - Cations: NH₄⁺, NVCs: Na⁺, Ca²⁺, K⁺, Mg²⁺
 - PM₁ vs PM_{2.5}, also PM_{2.5-10} ?
 - Particle water content (LWC)
 - Maybe OA for estimating OA contribution to water
 - Size resolved is useful
 - Ideally ions, not AMS "measured" ions, which also lacks NVCs
- 2. Gas species
 - HNO₃, HCI, NH₃, organic acids (?)
- 3. Meteorological
 - T, RH